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A Full Wave Analysis of Microstrips
by the Boundary Element Method
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Abstract—In this paper, the boundary element method (BEM)
is formulated to carry out a full wave analysis of microstrip lines.
Numerical results for frequency dependence of effective dielectric
constant and calculated longitudinal and transverse current dis-
tributions are presented. Fundamental and higher order modes
supported by the microstrip are identified and characterized.
Compared with other techniques, the present method requires
less memory size without requiring intricate mathematical skills
because of the inherent characterization of BEM in needing
only to discretize the boundary of the structure. Through our
simulation, it shows that this method can reduce memory size as
well as the computation time. Numerical results also show good
agreement with available data in literature.

I. INTRODUCTION

N modern microwave integrated circuits, the microstrip line

has become one of the most important and fundamental
components. In earliest publications, microwave propagation
was treated in the quasi-TEM mode [1]-[4]. In quasi-TEM ap-
proximation, the Poisson’s equation rather than the Helmholtz
equation is solved. Thus, the resultant parameters, such as
effective dielectric constant, are independent of frequency.
The quasi-TEM approximation was subsequently used in most
publications [S5], [6]. This approximation is valid only when
the cross-section geometry of microstrip structure is much
smaller than the wavelength of the propagation wave. Be-
yond this constraint, microstrip line is dispersive and departs
from the behavior predicted by quasi-TEM analysis. Since a
microstrip line contains two different dielectric media, all of
the propagation modes are hybrid. Thus, it is necessary to
use full-wave analysis to find the properties of propagation
modes. Various methods have been developed to examine
the dispersion characteristics. Typical methods are Green’s
function [7], finite difference [8] and [9], spectral-domain
[10]-[12], finite element [13] and [14], tangential vector finite
elements [15], and variational finite elements [16]. Recently,
the boundary element method (BEM) [17] has also been
used in the analysis of waveguide problems [18]-[20], and
magnetostatic waves [21]. However, in analyzing microstrip
line, BEM was used only in quasi-TEM approximation [22].

In this paper, we perform a full wave analysis of microstrip
using the BEM. The effective dielectric constants for funda-
mental and higher order modes are calculated. Longitudinal
and transverse current distributions are obtained by way of
the field solution. Besides the regular microstrip line, the
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method formulated is also employed to analyze coupled mi-
crostrip lines. The results indicate significant difference in the
propagation velocity between the even- and odd-modes. In
BEM, since the boundary integral is performed merely along
the contour, the required memory size and computation time
are considerably reduced. For the chosen structures that were
studied by others, our calculated results agree quite well with
the reported data.

II. BOUNDARY ELEMENT METHOD
FOR THE HELMHOLTZ EQUATION

In this method, the Helmholtz equation is converted to an
integral equation by way of the Green’s second identity {23]

// (gV?¢ — $Vg) dS = f (g g% - g%) dr (1

where the region S is surrounded by the contour I' shown in
Fig. 1. Inside the region S, ¢, and ¢ satisfy the Helmholtz and
point source equations, respectively, i.e.,

(V2 + k)¢ =0
(V24 kg =—6(F —7) )

where 6(-) is the Dirac Delta function and ¢ is the two-
dimensional (2-D) Green’s function that can be chosen as
[(=7)/41HP (k|7 — ")) for the propagation wave (k2 > 0),
and (1/27)Ko(k:|7 — #'|) for the evanescent wave (k? =
~k2 < 0). Here H{? is the zeroth order Hankel function of
the second kind and K, is the modified Bessel function [23].
Substituting (2) into (1) results in

0 a
Cyd(p;) = 7{ 9 % dl’ — f ¢ (52) dr (3

where (), is obtained by the Cauchy principal value integration
and is given by [18] and [21]
0, p¢I'+S

C; = 1, p; €8

'2;, pJ S F

where 0§ is the angle spanned by contour I' at point p,, as
indicated in Fig. 1. Upon discretization on I', (3) is converted
into

N
0
Cip; = Z / 93 ‘a%dfk
k=1

i 0
—2/45(52) dr @
k=1 n/
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Fig. 1. Two-dimensional model for BEM and spanning angle at point P

on boundary I'.

where ¢, = @(p,). Through linear interpolation, ¢ and
(0¢)/(On) within the kth segment I';, between points pj and
P+ can be evaluated as

A(7) =wigr + wadrt1
9, ¢ 9¢ (5)
on r) = <5—ﬁ>k M <8”>k+1

where wy, and w, are linear interpolation factors. Substituting
(5) into (4) yields

S a3 B (2) =
bt Y Byl 5] =0 ©)
k=1 k=1 k

( 0
Ajk :Cjéjk+/ (%) wy dl'y

7

0
+/ (—g) wa dl—,
on )

B]k:_/g]wldFk_/gjw2drk—1
\

where

1II. FORMULATION FOR THE MICROSTRIP LINE PROBLEM

Fig. 2 depicts the cross section of an open microstrip line
with infinite extent in both z- and z-direction and negligible
strip thickness. The dielectric substrate is assumed lossless,
homogeneous and isotropic. Relative permittivity and per-
meability of the substrate are &, and pu,, respectively. u,
is assumed to be one in this paper. Both the strip and
ground plane are perfect conductor. Propagation with e=7%%
dependence in the z direction and time variance of e?*! are
assumed. Since the four transverse field components F., F,,
H,, and H,, can be expressed in terms of E,, and H_,, in both
the dielectric and free space regions, it is sufficient to solve
the pair of Helmholtz equations given as

V2E, + k2E, =0
)

VZH,+kH, =0

where

and

2 2 _ 132
k?:{]"a—"w“:()ﬂ() /87 y>h (8)

k2 = wleoeppo — B2, 0<y<h’

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 11, NOVEMBER 1996

y
A
'/Strip
T —w |
h Substract
|-
> x
Ground Plane
z
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Fig. 3. Half cross section of a microstrip and the discretization on its
boundaries.

Due to symmetry of the structure, we may place a magnetic
(or electric ) wall on the z = 0 plane to group propagation
modes into two kinds. For example, the fundamental mode
(first order mode) has magnetic wall on the = 0 plane;
whereas the second order mode has electric wall. Therefore,
instead of Fig. 2, we consider the quarter space (z > 0, y > 0)
as shown in Fig. 3 for simplicity. Boundary conditions, in this
case, can be described as

E,, OH. _ 0, (on electric wall)
O, (
c'ink , H, =0, (on magnetic wall)

and, along the dielectric interface ab in Fig. 3 as

gOH= (L _ 1\ _ 1 9E.| ¢ 0K,
oz \ky k3) LM Oy |, K 9y,
ﬂaEz<1 1) 1 8H, 1 6H,
0B, (1 1\ _ - [1O0H.| 1
or \k§ K2 HoUk2 By |, &2 oy |,

(10)

where the subscripts 1 and 2 in (10) stand for the free space
and the dielectric space in Fig. 3, respectively [24].

IV. THE NUMERICAL PROCEDURE

Since Fig. 3 is an open half structure. the boundary contour
extends to infinity. Thus, for numerical calculation, we have
to replace it with a finite contour. As shown in Fig. 3, the
numbers of nodes discretized for boundary segments E, BE,
cf. cd, and de are Ny, Na, N3, Ny, and N3, respectively.
For each node, substituting ¢y, [(06)/(0n)] in (6) by (E, )k,
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[(0E.)/(On)|x and (H, )k, [(OH,)/On)]x in each region S;,
respectively, and applying the boundary condition (9), we
obtain 2(N; + Ny 4+ N3) homogeneous linear equations for
the free space S; and 2(N; + Ny + Ny + N5) for the dielectric
region Sy. These equations can be expressed as

cH | 2z 11
[C*] o (11)
O0H,
on

where 1 and 2 stand for regions S¢ and Ss, respectively. The
orders of [C*] and [C?] are 2(N; + Na + N3) x (4N1 + 2N, +
2N3) and 2(N1+N2+N4+N5) X (4N1 +2N2+2N4+2N5).
The number of columns in [C?] represents the number of
unknowns in space S,. In order to obtain the elements in
[C*], the following formulas [23] are useful to compute the
integration which passes through a singular point.

/O ' oKo(ke) dz ~ é [% _ Kl(kl)]

! [ 2
/0 wHo(ke) dz ¢ [_m - Hl(lcl)}

!
/ Ko(kz)de =I[ln 2 —In (k) — v + 1]
0

1 .
/ Holkz)dx ~1 + 2?21 [In2-In(kl) —v+1] (12)
0

where v is the Euler—-Maclaurin constant and ! should be
chosen to be small enough such that the above approximation
is valid.

Furthermore, using Gaussian elimination method [25] to
eliminate those variables which are not on the dielectric
interface ab, we can reduce the order of [C*] to 2N; X 4N.
Combining the reduced [C!], [C?] and imposing boundary

condition (9) to each node on ab, one obtains

E’Z
H,
OE,
on
OH,
on

Since FE,, H,, are continuous along interface ab, there are
6/N; unknowns to solve and the final matrix [D]’s order is
6/N; X 6N;. Nontrivial solution exists only if det [D] = 0.
Note that elements D,, in [D] involve values of § and w.
Under the condition of det [D] = 0, we can find out that, for
each frequency, there are several (3’s satisfied. Each g should
be bounded by 1 < §/ko < ./, and corresponds to one
propagation mode. Here kg, the wave number in free space,
is equal t0 w ,/€q fto. From the frequency dependent (3, one
can obtain the dispersion relation and the effective dielectric
constant €.y which is equal to (3/ko)%.

Since we discretize the finite boundary that approximates
the infinite boundary, it is difficult to achieve the requirement
det [D] = 0. Therefore, instead, we try to find out local

(D] 3)
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Fig. 4. Absolute value of determinant D versus effective dielectric constant
with the magnetic wall on & = 0 plane (h = 3.17 mm, w = 3.048 mm,
&r =11.7, Nt =50, Ny =12, N3 =11, N3 = 6, Ny = 5, and N; = 16).

minima of | det [D]|. Each e, that gives a minimal | det [D]|
would correspond to a propagation mode. In implementing
the numerical procedure, the adaptive method is used to
determine the range and the distribution of nodes on the
boundaries. First, based on the electrostatic field distributions
calculated using the analytical solution incorporated with
electrode discretization technique [6], an initial discretizing
configuration is established. As shown in Fig. 3, the initial
truncation points are chosen at locations where the electrostatic
field value decreases to 0.001 of the value at the center of
stripline, i.e., point ¢ in Fig. 3. For typical data presented
in Fig. 4, the initial truncation points a, e, and f are found
relative to other points by the relations @ = de = 15¢d,
cf = 10ed. At the chosen truncation points, the field value
is set to zero. Using iteration by decent method'to search for
the corresponding ¢, that gives minimal |det [D]| over all
possible ¢, and varying the position of each node, including
the truncation points, we can obtain the e.;¢ which is the
stationary global minimum of |det [D]| among these e .. If
this condition cannot be reached, new guess is tried. The order
of iteration is O(N; + N3 4 Ns), since the nodes on be, cd
are fixed in this paper.

V. NUMERICAL RESULTS

Based on the preceding procedure, a FORTRAN program
has been implemented in workstation NCD 19C. The running
time of a search of det [D] for the typical order (V; = 50,
N; = 12) is 12 s. A microstrip shown in Fig. 2 with h = 3.17
mm, w = 3.048 mm, and &, = 11.7 is analyzed using the
formulation developed above. This particular microstrip is
chosen so that the calculated results can be compared with
the reported values. Fig. 4 exhibits the |det [D]| versus the
effective dielectric constant e.;; with the magnetic wall on
z = 0 plane for four frequencies. One curve is obtained

'"We try both positive and negative direction to see which one gives
decreasing | det [D]].
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Fig. 5 Absolute value of determinant D versus effective dielectric constant

with the electric wall on 2 = 0 plane (h = 3.17 mm, w = 3.048 mm,
g =117, Ny =50, Ny =12, No = 11, N3 = 6, Ny = 5, and N5 = 16).
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Fig. 6. Effective dielectric constant of the fundamental mode and higher
order modes in the open microstrip line (A = 3.17 mm, w = 3.048 mm,
&r = 11.7, Ny = 50, Ny = 12, Ng = 11, N3 = 6, N4 = 5, and
N5 = 16), Farrar and Adams [11].

for each frequency. There are two e.ry values that give
minimum values of |det[D]|. The higher e.rs corresponds
to the fundamental mode; whereas the lower one corresponds
to the third order mode. The dips for the fundamental mode
are very sharp because they are close to ¢, that is the maximum
possible €. y. Note that the width of these dips becomes wider
at lower frequency, i.e., the accuracy of .y becomes less for
lower frequency.

Fig. 5 presents the |det[D]| with the electric wall on
z = 0 plane. The curves for 10, 15, and 20 GHz have one
minimum | det [D]| at €.5¢ that belongs to the second order
mode; whereas the curve for 30 GHz has two minima which
correspond to the second and fourth order modes. The total
number of nodes used in Figs. 4 and 5 is N; = 50 and
the number of nodes along interface ab is Ny = 12. Fig. 6
displays the collection of these modes as compared to the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 11, NOVEMBER 1996

TABLE 1
CALCULATED € f 5 OF THE SECOND ORDER MODE AT 5 GHZ VERSUS
THE TOTAL NUMBER OF NODES THE DISCREPANCY OF CALCULATED
Eeyy FROM THE 7.176 VALUE THAT WAs REPORTED IN [10]

Division N, N, Eoff Dis.
1 45 10 7.825 9%
2 50 12 7.452 3.8%
3 57 15 7.197 0.28%
4 65 18 7.178 0.03%
TABLE II

A COMPARISON ON THE CALCULATED €. ¢ ¢ WITH OTHER METHODS A:
FEM BY SHIH [16]; B: FEM BY LEE [15]; C: PRESENT METHOD

Methods Node Order of Accuracy
number [D]
A 81 162 x 162 10*
B 80 160 x 160 10"
C 50 72x72 10
C, 57 90 x 90 107
Cy 65 108 x 108 107
12.0 -

w=12.16(mm)

Effective Dielectric Constant

6.0 T

A

0.0 5.0

A
10.0 15.0
Frequency (GHz)

T

20.0

Fig. 7. Effective dielectric constant of fundamental modes (b = 3.04 mm,
e = 11.7, w = 12.16,3.17, 1.215 mm Shih et al. [16] - - - : present method.

previous work analyzed by Farrar [11]. Results agree well
for the fundamental mode; the agreement is less favorable for
higher order modes at low frequency since it has broader and
more varying field distribution. However, it can be improved
greatly by increasing the number of nodes as shown in Table
I. For example, by increasing the total number of nodes from
50 to 65, the discrepancy on the calculated .75 for the second
order mode at 5 GHz from that reported in [10] can be reduced
from 3.8 to 0.03%.

Fig. 7 provides the effective dielectric constants for the
structure with various strip width w = 12.16, 3.17, and 1.215
mm in the same dielectric substrate with £, = 11.7 and height
h = 3.04 mm. Our results agree with Shih er al.’s, results
[16]. The deviation is less than 2%. A comparison with the
available data of finite element methods is shown in Table
II. Our method can reach 10~ accuracy with the number of
nodes increasing to 65.

After determining e.5y, we can use (12) and Maxwell’s
equations to obtain field values on ab. By way of this, surface
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Fig. 8. Normalized current distribution of the fundamental mode versus
normalized distance with frequency as a parameter. 2 = 3.04 mm, e, = 11.7,
and frequency = 1, 5, 10, 15, and 20 GHz. (a) transverse current I, (x) and
(b) longitudinal current I, (x), Shih et al. [16] - - - ; present method.

current distributions I, and I, can be obtained from boundary
conditions, i.e., I, = H,1 — H,o and I, = H,o — H,;.
Fig. 8 displays the current distributions of I,(z)/I; max and
I.(z)/1.(0) for the fundamental mode. Fig. 9 shows the
current distributions for the second order mode. Fig. 8 agrees
well with Shih et al.’s results [16]. The current distribution
I, tends to concentrate more at the edge of the strip for the
fundamental mode and toward the center for the second order
mode as frequency becomes higher. However, they do not
change much with frequency.

The method presented here can also be applied to coupled
microstrip lines as shown in Fig. 10. Fig. 11 shows the com-
puted effective dielectric constants of the even- and odd-modes
versus frequency for various spacing between the two strips.
The strip width, substrate height and dielectric constant are 0.6
mm, 0.64 mm, and 9.9, respectively. The discrepancy is within
5% compared with the results of Jansen [26]. The numbers of

1981
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Fig. 9. Normalized current distribution of the second order mode versus
normalized distance with frequency as a parameter. » = 3.04 mm, e, = 11.7
and frequency = 1, 5, 10, 15, and 20 GHz. (a) transverse current I, (z) and
(b) longitudinal current I.{z).

nodes in ab and cd are 10 and 8, respectively, and the total
number of nodes is 75. The CPU time for each iteration of
det [D] for the typical order (IV; = 50, Ny = 12) is 12's
using NCD 19C workstation, as compared to 50 min for 1232
triangular elements using vector finite element method on the
Standard Model P3 computer by Slade and Webb [27], and to
120 s for the first-order and 500 s for the second-order modes
using the spectral-domain method on CDC G-20 computer by
Itoh and Mittra [10].

V1. CONCLUSION

A full-wave analysis of open structure microstrip problem
using the BEM has been presented. This method, in numerical
calculation, is characterized by the reduction of memory size
without resorting to intricate mathematical skills. Numerical
results of the effective dielectric constants for the fundamental
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Fig. 11. Effective dielectric constant of the even- and odd-modes propa-

gating along coupled microstrip lines with varying spacing. w = 0.6 mm,
h = 0.64 mm, and £, = 9.9, Jansen [26] ***; present method.

and higher order modes have been obtained. Longitudinal and
transverse current distributions are also shown. In each case the
results are in good agreement with published results. Besides
regular microstrip line, coupled microstrip lines have also been
analyzed.

This method is rather general and thus can be extended
to other more complicated structures, such as microstrips
with multilayered substrate, microstrips of finite metallization
thickness, and the coplanar microstrip.
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